
CPS311: COMPUTER ORGANIZATION

Translation Patterns for Typical Higher Level Language Constructs

In what follows, the "C's" are any boolean condition, the "S's" any executable statement, the "L's" are
arbitrary labels, "E" is an ordinal expression, and the "V's" are constants of the same type as E.

Higher Level Language (e.g. C) Assembly Language

goto L; Branch to L
--
if (C) Branch if C is false to L1

S; Code for S
L1:

--
if (C) Branch if C is false to L1

S1; Code for S1
else Branch to L2

S2; L1:
Code for S2

L2:
--
if (C1) Branch if C1 is false to L1

S1; Code for S1
else if (C2) Branch to Le

S2; L1:
... Branch if C2 is false to L2
else if (Cn) Code for S2

Sn; Branch to Le
else L2:

Sf; ...
Branch if Cn is false to Ln
Code for Sn
Branch to Le

Ln:
Code for Sf

Le:
--
while (C) Branch to L2

 S; L1:
Code for S

L2:
Branch if C is true to L1

--
do L1:

 S; Code for S
while (C); Branch if C is true to L1
--
for (V = L; V <= H; V++) Code to set V = L

 S; Branch to L2
L1:

Code for S
Code to increment V

L2:
Branch if V <= H to L1  

1

switch(E) Two options
{

case V1: If the set of values forms a dense set (i.e.
S1; includes all or most of the values in the range
break; V1 .. Vn):

case V2:
S2; • Translate the statements using the
break; following pattern. (Assume values are

case V3: sorted in ascending order from V1..Vn)
S3;
break; L1: Code for S1

... Branch to Le
case Vn: L2: Code for S2

Sn; Branch to Le
break; L3: Code for S3

Branch to Le
default: ...
Sd; Ln: Code for Sn

} Branch to Le
Ld: Code for Sd

Branch to Le

• Create a jump table, structured as  
 follows: (If any value is missing, put
 Ld address in its slot in the table)

Lc:
L1 address;
L2 address;
L3 address;
...
Ln address

• Translate the switch instruction as
 follows

Code to evaluate E
Branch if E < V1 or > Vn to Ld
Set temp = (E-V1) * size of address
Branch to address in Lc[temp]

Le:

Alternate

(Always applicable). Translate as if written:

temp = E;
if (temp == V1)

 S1;
else if (temp == V2)

 S2;
...
else if (temp == Vn)

 Sn;
else

 Sd;

2

